李永乐 数学讲师
广受学生信赖的“线代王”

预约

2023考研计算机专业课考点复习:时间复杂度 计算机考研题目训练

2022-12-24 10:09:54 来源:天任考研  

2023考研计算机专业课考点复习:时间复杂度 计算机考研题目训练

  2023考研科目中,很多考生将大量时间放在了数英政上,在这里小编提醒各位考研人别忽视专业学科的学习。下面天任小编为大家整理了“2023考研计算机专业课考点复习:时间复杂度”,希望能帮助大家更好的准备专业科目。


  2023考研计算机专业课考点复习:时间复杂度

  算法的时间量度指的是算法中基本操作重复执行的次数。

  一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数f(n),算法的时间量度记作T(n)=O(f(n)),通常称为时间复杂度,其中O的形式定义为:若f(n)是正整数n的一个函数,则xn=O(f(n))表示存在一个正的常数M,使得当n&gen0时都满足|xn|&leM|f(n)|。

  注意:基本操作是其重复执行的次数和算法的执行时间成正比的原操作,多数情况下它是最深层循环内的语句中的原操作,它的执行次数和包含它的语句的频度是相同的。语句的频度指的是该语句重复执行的次数。

  计算时间复杂度关键的基本操作。例如,在下列3个程序段中:

  (1)++x s=0

  (2)for (i =1 i <=n ++i) ++x s+=x

  (3)for (j =1 j<=n ++j)

  for (k =1 k<=n ++k) ++x s+=x

  含基本操作“x增1”的语句的频度分别为1、n和n2,则这3个程序段的时间复杂度分别为O(1)、O(n)和O(n2)。算法还可能呈现的时间复杂度有对数阶O(log2n)、指数阶O(2n)等。

  备考过程中,你可能很努力却还收效甚微,但我们要记住,量变坚持下去才会形成质变。星光不问赶路人,时光不负有心人。你的坚持,终将美好。

  以上是天任考研小编为大家整理的“2023考研计算机专业课考点复习:时间复杂度”的相关内容,希望为大家准备专业科目方面上提供一些参考和帮助。成功不是一簇而就的,大家一定要在学习上用对方法,坚持就能看到进步。

热门好课推荐

MORE

2025考研英语无忧班

时长:468课时


  • 刘晓艳

  • 张超

3000元
已报501人

2025考研数学无忧班

时长:604课时


  • 李永乐

  • 宋浩

4000元
已报198人

2025考研政治无忧班

时长:225.5课时


  • 孔昱力

2000元
已报337人

2025考研管综无忧班

时长:440h


  • 吕建刚

3980元
已报112人