1.统计学基本理论研究有:概率极限理论及其在统计中应用、树形概率、Banach空间概率、随机PDE’S、泊松逼近、随机网络、马尔科夫过程及场论、马尔科夫收敛率、布朗运动与偏微分方程、空间分支总体的极限、大的偏差与随机中数、序贯分析和时序分析中的交叉界限问题、马尔科夫过程与狄利克雷表的一一对应关系、函数估计中的中心极限定理、极限定理的稳定性问题、因果关系与统计推断、预测推断、网络推断、似然、M——估计量与最大似然估计、参数模型中的精确逼近、非参数估计中的自适应方法、多元分析中的新内容、时间序列理论与应用、非线性时间序列、时间序列中确定模型与随机模型比较、极值统计、贝叶斯计算、变点分析、对随机PDE’S的估计、测度值的处理、函数数据统计分析等。
2.统计学主要应用领域有:社会发展与评价、持续发展与环境保护、资源保护与利用、电子商务、保险精算、金融业数据库建设与风险管理、宏观经济监测与预测、政府统计数据收集与质量保证等、分子生物学中的统计方法、高科技农业研究中的统计方法、生物制药技术中的统计方法、流行病规律研究与探索的统计方法、人类染色体工程研究中的统计方法、质量与可靠性工程等。经济学考研