李永乐 数学讲师
广受学生信赖的“线代王”

预约

闽南师范大学2019年高等代数考研大纲

2020-03-27 13:38:06 来源:启航考研信息网  

闽南师范大学2019年高等代数考研大纲

闽南师范大学2019年硕士研究生入学考试《高等代数》考试大纲

一、考试基本要求:

考察学生对《高等代数》的基本理论、基本方法和基本技能的掌握程度;考察学生抽象思维、逻辑推理和分析、解决问题的能力。

二、考试方法和时间

考试方法为笔试,考试时间为3个小时。

三、考核知识点

(一)多项式

整除理论:括整除性、带余除法、最大公因式、互素的概念与性质;因式分解理论:括不可约多项式、因式分解定理、重因式、实系数与复系数多项的因式分解,有理系数多项式不可约的判定;根的理论:括多项式函数、多项式的根、有理系数多项式的有理根求法。

(二)行列式

行列式的定义、性质;行列式的按行(列)展开定理,Laplace展开定理;行列式的计算方法;克莱姆法则。

(三)线性方程组

线性方程组的解法——消元法;数域P上n维向量空间Pn及向量的线性相关性;线性方程组有解的判别定理;线性方程组解的结构及齐次线性方程组的解空间的讨论。

(四)矩阵

矩阵的运算;初等变换与初等矩阵;可逆矩阵;分块矩阵;矩阵的秩;矩阵的等价(即相抵)、合同、相似、正交相似;矩阵的可对角化问题。

(五)二次型

二次型的标准形与合同变换;复数域与实数域上二次型的标准形、规范形;正定二次型、半正定二次型及相应的矩阵类型。

(六)线性空间

线性空间的概念;基、维数与坐标;基变换与坐标变换;子空间、子空间的交与和、维数公式、子空间的直和;线性空间的同构。

(七)线性变换

线性映射与线性变换的概念、运算;线性变换的矩阵表示;线性变换(矩阵)的特征多项式、特征值与特征向量;线性变换的值域与核;不变子空间;最小多项式。

(八)λ-矩阵

λ-矩阵在初等变换下的标准形;不变因子、矩阵相似的条件;初等因子、Jordan标准形。

(九)欧氏空间

向量内积;正交基(组)、标准正交基(组)、度量矩阵;正交变换与正交矩阵;子空间的正交关系、正交补;对称变换与实对称矩阵。

四、参考书目

北京大学数学系几何与代数教研究前代数小组编,王萼芳、石生明修订《高等代数》(第三版),2003,高等教育出版社。

闽南师范大学数学与统计学院

2018年6月

热门好课推荐

MORE

2025考研英语无忧班

时长:468课时


  • 刘晓艳

  • 张超

3000元
已报501人

2025考研数学无忧班

时长:604课时


  • 李永乐

  • 宋浩

4000元
已报198人

2025考研政治无忧班

时长:225.5课时


  • 孔昱力

2000元
已报337人

2025考研管综无忧班

时长:440h


  • 吕建刚

3980元
已报112人