李永乐 数学讲师
广受学生信赖的“线代王”

预约

2025年考研考试大纲-数学三之概率论与数理统计,考研考数学三的概率论与数理统计的同学收藏必看

2025-12-22 10:13:47 来源:天任考研  

2025年考研考试大纲-数学三之概率论与数理统计,考研考数学三的概率论与数理统计的同学收藏必看

2025年数学三考试大纲

考试科目:微积分、线性代数、概率论与数理统计

考试形式和试卷结构

一、试卷满分及考试时间

试卷满分为150分,考试时间为180分钟.

二、答题方式

答题方式为闭卷、笔试.

三、试卷内容结构

微积分 约60%

线性代数 约20%

概率论与数理统计约20%

四、试卷题型结构

单项选择题选题10小题,每小题5分,共50分

填空题6小题,每小题5分,共30分

解答题(包括证明题)6小题,共70分

概率论与数理统计

一、随机事件和概率

考试内容

随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验

考试要求

1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。

2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等。

3.理解事件的独立性的概念,掌握用事件独立性进行概率计算的方法(2025考试大纲新增);理解独立重复试验的概念,掌握计算有关事件概率的方法。

二、随机变量及其分布

考试内容

随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布

考试要求

1.理解随机变量的概念,理解分布函数

三、多维随机变量的分布

考试内容

多维随机变量及其分布函数 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量简单函数的分布

考试要求

理解多维随机变量的分布函数的概念和基本性质。

理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布。

3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系。

5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其简单函数的分布。

四、随机变量的数字特征

考试内容

随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式 矩、协方差、相关系数及其性质

考试要求

1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征。

2.会求随机变量函数的数学期望。

3.了解切比雪夫不等式。

五、大数定律和中心极限定理

考试内容

切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗—拉普拉斯(De Moivre-Laplace)定理 列维—林德伯格(Levy-Lindberg)定理

考试要求

1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)。

2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率。

六、数理统计的基本概念

考试内容

七、参数估计

考试内容

点估计的概念 估计量和估计值 矩估计法 最大似然估计法

考试要求

1.了解参数的点估计、估计量与估计值的概念。

2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法。

在线报名申请表

热门好课推荐

MORE

2026考研英语无忧班

时长:468课时


  • 刘晓艳

  • 张超

3000元
已报501人

2026考研数学无忧班

时长:604课时


  • 李永乐

  • 宋浩

4000元
已报198人

2026考研政治无忧班

时长:225.5课时


  • 孔昱力

2000元
已报337人

2026考研管综无忧班

时长:440h


  • 吕建刚

3980元
已报112人