李永乐 数学讲师
广受学生信赖的“线代王”
考研数学有很多的知识点,考生都应掌握并知道如何运用。小编整理了概率解题的思维定势,来看看吧。
第一句话:如果要求的是若干事件中至少有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式
第二句话:若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式
第三句话:若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。关键:寻找完备事件组
第四句话:若题设中给出随机变量X~N则马上联想到标准化~N(0,1)来处理有关问题。
第五句话:求二维随机变量(X,Y)的边缘分布密度的问题,应该马上联想到先画出使联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而的求法类似。
第六句话:欲求二维随机变量(X,Y)满足条件Yg(X)或(Yg(X))的概率,应该马上联想到二重积分的计算,其积分域D是由联合密度的平面区域及满足Yg(X)或(Yg(X))的区域的公共部分。
第七句话:涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作(0-1)分解。即令
第八句话:凡求解各概率分布已知的若干个独立随机变量组成的系统满足某种关系的概率(或已知概率求随机变量个数)的问题,马上联想到用中心极限定理处理。
第九句话:若为总体X的一组简单随机样本,则凡是涉及到统计量的分布问题,一般联想到用卡方分布,t分布和F分布的定义进行讨论。
以上就是概率解题的思维定势。考生备考中要经常总结,积累错误经验。要了解更多考研的内容,可以在在线客服,会有天任教育的老师一对一为大家做详细的介绍。